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Consider a discrete-time Markov chain X = {Xn : n ≥ 0} on a
complete separable metric space E with transition kernel P =
(P(x , dy) : x , y ∈ E ). We assume that X has a unique
stationary distribution π = (π(dx) : x ∈ E ).

Consider a sequence of truncated sets An ⊂ E , such that An

tends to E . Define Pn to be the truncated and augmented
chain, i.e. Pn ≥ PAn and Pn is stochastic. Let Πn be the set of
all the invariant distributions (n)π of Pn. Suppose that Πn is
not empty.

Question: (n)π → π?
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We now provide an example showing that even when X is very
well-behaved, (n)π may fail to converge to π as n→∞.

Example 1. Suppose that E = Z+ with P(2i , 2i + 1) = 1/2
= P(2i , 0) for i ∈ Z+, and P(2i + 1, 2i + 2) = 1 for i ∈ Z+.
Then,

P2(2i , 0) ≥ P(2i , 0)P(0, 0) =
1
4

for i ∈ Z+ whereas,

P2(2i + 1, 0) ≥ P(2i + 1, 2i + 2)P(2i + 2, 0) =
1
2
,

for i ∈ Z+. Hence P2(x , 0) ≥ 1/4 for x ∈ Z+, so that the
two-step transition matrix is a Markov matrix, and X is
uniformly ergodic.
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Suppose we use last state augmentation. Then, when
An = {0, 1, . . . , n} with n odd, state n is absorbing, and the
single closed communicating class corresponding to (n)P is just
{n}. It follows that

(n)π(x) =

{
1, if x = n,
0, otherwise, for n odd,

so that (n)π fails to converge to the stationary distribution π
of X, despite the fact that X is uniformly ergodic.
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For augmented truncation approximations, one often wants to
know
. whether the equilibrium behavior of the truncated and
augmented chain converges to that of the untruncated system;
. the quantitative bounds on the difference between them
when the stability is robust.

Let f be a finite-valued positive function on E . For a finite
measure µ, define its f -norm by

‖µ‖f := sup
|g |≤f
|µ(g)|.

For f ≡ 1, the f -norm coincides with the total variation norm
which will be denoted by ‖ · ‖1.
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Related literature

For convergence:

. Seneta (1980): convergence holds iff {(n)π, n ≥ 1} is tight;

. Liu and Zhao (1995): the censored MC is the best.

. Tweedie (1998): addressed the two issues well for the first
and the last column augmentation when P is a Markov matrix
or P is geometrically ergodic and monotone.
. Liu (2010): investigated an arbitrary augmentation and
truncation bounds for polynomially ergodic and monotone
MCs.
. Hart and Tweedie (2012): studied the convergence for CT
Markov processes.
. · · · · · ·
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For error bounds:

. Tweedie (1998): f -norm bounds for monotone and
geometrically ergodic MCs by Ergodicity Method.
. Herve L. and Ledoux J. (2014, 2022): general Mcs EM.
. Masuyama (2016): f -norm bounds for the LCBA truncation
under drift conditions for matrix-analytic models Perturbation
Method.
. Liu and Li (2018): computable f -norm bounds via the
Poisson equation, the residual matrix, and the norm ergodicity
coefficient. PM
. Kuntz et al. (2021) (Siam Review): convergence and error
bounds for stochastic reaction networks.
. · · · · · ·
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In this talk, we study general truncation-augmentation
schemes of Markov chains on “general” state spaces.

. We give some conditions under which one can be assured
that arbitrarily augmented truncation approximation is
convergent.

. We derive the upper and lower bounds of a solution to the
Poisson equation, based on which the error bounds of the
truncation schemes is further obtained.
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A function V : E → R+ is said to be coercive if the sublevel
set

Bn := {x ∈ E : V (x) ≤ n}

is either empty or compact in E for each n ≥ 1. Let Pn be
defined on the truncated subset Bn.

Consider the following assumptions.

A1. There exists a coercive function f , a non-negative
function V : E → R+, and b <∞ for which for x ∈ E∫

E
P(x , dy)V (y) ≤ V (x)− f (x) + b

A2. P is weakly continuous, i.e., P maps a bounded
continuous function into a bounded continuous function.
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Theorem 1. (IGL 2022) Suppose A1 and A2 hold with V
continuous. If (n)π ∈ (n)Π, then

(n)π ⇒ π

as n→∞, where ⇒ denotes weak convergence in E .

Sketch of proof:
. Show the tightness of the sequence ((n)π, n ≥ 1) (A1). Then
there exists a probability π′ on E such that

(n′
k)
π ⇒ π′, as k →∞.

. Prove that π′(dy) =
∫

E π
′(dx)P(x , dy) (A2).
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X is called strongly uniformly recurrent if there exists λ > 0
and a probability φ such that for x , y ∈ E

P(x , dy) ≥ λφ(dy).

Theorem 2. (IGL 2022) Suppose that X is strongly
uniformly recurrent under P with a unique stationary
distribution π. Then, X is strongly uniformly recurrent under
(n)P with a unique stationary distribution (n)π, and

‖(n)π − π‖1 → 0, as n→∞.
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Perturbation formula

Let ψx ,n(·) be a probability distribution on An, which depends
on n and x . The generally augmented truncation of P to the
set An, denoted by (n)P , is defined as

(n)P(x , dy) :=

{
P(x , dy) + ψx ,n(dy)P(x ,Ac

n), if x ∈ E , y ∈ An,
0, if x ∈ E , y ∈ Ac

n .

In other words, whenever P would make a transition from x to
Ac

n, (n)P transitions to y ∈ An with probability ψx ,n(dy);
otherwise, (n)P is the same as P .

Perturbation formula: (π − π̂)g = π̂(P − P̂)g̃ .
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Upper bounds via the Poisson equation

The Poisson equation is known as

g̃ − Pg̃ = ḡ (1)

where ḡ = g − (πg)e.

The function g is called the forcing function and is assumed to
satisfy πg <∞. The function g̃ satisfying (1) is called the
solution to the Poisson equation, which is not unique (not
even unique up to additive constants).
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A3. There exists a positive constant λ, probability
distributions ϕ and a = (a(n), n ∈ Z+) such that

∞∑
n=0

a(n)Pn(x , ·) ≥ λϕ(·), x ∈ C .

A4. There exists a positive constant b <∞, a set C and
finite functions V ≥ 1 and f ≥ 1 such that

PV (x) ≤ V (x)− f (x) + b · 1{C}(x), x ∈ E ,

where 1{C}(·) is the indictor function in the set C .
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Lemma 1. (GLL 2022) Suppose that A3 and A4 hold (for
the same C ). Then for any measurable function g satisfying
0 ≤ g ≤ f , there exists a solution g̃ to Poisson equation (1)
such that

−b (V (x) + bd) ≤ g̃(x) ≤ V (x) + bd , for x ∈ E ,

where d = 1
λ

∑∞
n=0 na(n).

Sketch of proof:
. Construct a split chain and obtain the solution of Poisson
equation

g̃(x) = Ex

τ−1∑
j=0

ḡ(Xj).

. Apply the comparison theorem and properties of the split
chain to bound g̃(x).
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Theorem 3. (GLL 2022) Let N(C ) = min{n : C ⊆ An}
and V be a coercive function. Suppose that {(n)P , n ≥ N(C )}
uniformly satisfies A3 and A4. Then, for (n)π ∈ (n)Π, we have

∥∥π − (n)π
∥∥

f ≤ b[n + d(b + 1)]π(Ac
n) +

∫
y∈Ac

n

π(dy)V (y)

= H1(n, b, d ,V ),

where d = 1
λ

∑∞
n=0 na(n). Moreover, if πV <∞, then

H1(n, b, d ,V )→ 0 as n→∞ and∥∥π − (n)π
∥∥

f → 0, n→∞.
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Upper bounds via the norm ergodicity coefficient

The V -norm ergodicity coefficient is defined by ΛV (B) of a
kernel B by

ΛV (B) = sup {‖µB‖V : ‖µ‖V ≤ 1, µe = 0} .

Theorem 4. (GLL 2022) Let V be a coercive function.
Suppose that πV <∞, β = ‖(n)P‖V <∞ and there exists a
positive integer m and a positive constant ρ < 1 such that
ΛV
(
(n)Pm

)
≤ ρ for any n. Then there exists a unique (n)π

such that ∥∥π − (n)π
∥∥

V ≤ H2(n,m, ρ,V ), (2)
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where

H2(n,m, ρ,V ) =

{
1−βm

(1−β)(1−ρ)

(
nπ(Ac

n) +
∫
y∈Ac

n
π(dy)V (y)

)
, if β 6= 1,

m
1−ρ

(
nπ(Ac

n) +
∫
y∈Ac

n
π(dy)V (y)

)
, if β = 1,

and H2(n,m, ρ,V )→ 0 as n→∞.

Remark. Since ‖(n)P‖V ≤ ‖P‖V and ΛV ((n)P) ≤ ΛV (P),
‖P‖V <∞ and ΛV (P) ≤ ρ are verifiable sufficient conditions
for ‖(n)P‖V <∞ and ΛV ((n)P) ≤ ρ uniformly.

However, it is worth noting that for m > 1, we cannot make
the condition ΛV ((n)Pm) ≤ ρ satisfied by requiring
ΛV (Pm) ≤ ρ. Considering Example 1, one can easily calculate
that Λ1(P2) = 3/4 < 1 while Λ1((n)P2) = 1 for n > 1 odd.
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For V ≡ 1 (although not coercive), applying the similar
arguments yields the following results.

Corollary 1. Suppose that there exists a positive integer m
and a positive constant ρ < 1 such that Λ1

(
(n)Pm

)
≤ ρ for

any n. Then there exists a unique (n)π such that

∥∥π − (n)π
∥∥

1 ≤
2mπ(Ac

n)

1− ρ
.

In particular, if Λ1 (P) ≤ ρ, then the above result holds for
m = 1.

22 / 31



Introduction Convergence results Computable error bounds Illustrative example Discussion for CTMCs

Considering the uniformly recurrent Markov chains, we derive
the following corollary.

Corollary 2. Suppose that there exists a positive integer m, a
positive constant λ < 1 and a probability measure φm such
that

(n)Pm(x ,A) ≥ λφm(A) (3)

for any n and for all x ∈ E and A ⊆ E . Then, for (n)π ∈ (n)Π,
we have

‖π − (n)π‖1 ≤
2mπ(Ac

n)

λ
.

Note when m = 1, X is strongly uniformly recurrent.
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Lower bounds in the total variation norm

Proposition 1 (GLL 2022) The total variation error of
stationary probabilities between the original Markov chain and
the augmented Markov chain is given by

‖π − (n)π‖1 ≥ 2π(Ac
n).

Remark. For uniformly recurrent Markov chains satisfying
(3), we have

2π(Ac
n) ≤ ‖π − (n)π‖1 ≤

2mπ(Ac
n)

λ
.
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Example 1. Consider a DTMC X = {Xn, n ≥ 0} with
transition probabilities

P(i , 0) =
1− 2a
1− a

, P(i , i+k) = ak , k = 1, 2, . . . , for any i ≥ 0,

where 0 < a < 1
2 . It is obvious that the chain X is strongly

uniformly recurrent. By Corollary 2, we immediately have

‖π − (n)π‖1 ≤
2(1− a)

1− 2a

∞∑
i=n+1

π(i).

For 1 < s < 1
2a , let V (i) = s i , i ≥ 0. One can easily verify that

PV (i) ≤ βV (i) + b, for i ≥ 0,

where β = as
1−as < 1 and b = 1− a

1−a .
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Multiplying both sides of the above drift condition by π yields
πV ≤ b

1−β , from which it follows that

∞∑
i=n+1

π(i) ≤ 1
sn+1

∞∑
i=n+1

π(i)s i ≤ bs−(n+1)

1− β

and
‖π − (n)π‖1 ≤

2a
1− 2as

s−n.

Then for any fixed ε > 0, we can set Nε = − logs
(1−2as)ε

2a and
guarantee that

‖π − (n)π‖1 ≤ ε, for n ≥ Nε.
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Observe that the results of Liu and Li (2018) are also valid for
this example. However, they rely on the quantity

n∑
i=0

(n)π(i)
∞∑

j=n+1

P(i , j)(V (n) + V (j)).

In order to find the minimum truncation size that controls the
error ‖π − (n)π‖V within some fixed precision, applying their
results requires calculating the above quantity in terms of
every possible n in advance, which is computationally
expensive and cumbersome.

Our results are more straightforward and effective in
determining the threshold Nε of the truncation size.
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Discussion for CTMCs

Parallel to the results of DTMCs, we can obtain the similar
upper bounds on augmented truncation approximations for
CTMCs via the Poisson equation.

For CTMCs with bounded generators, this result works well.
However, it may be invalid for those with unbounded
generators.
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Thank you for your attention!

31 / 31


	Introduction
	Convergence results
	Computable error bounds
	Illustrative example
	Discussion for CTMCs

